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Density fluctuations and phase transition in the Nagel-Schreckenberg traffic flow model

S. Lübeck, M. Schreckenberg, and K. D. Usadel
Theoretische Physik, Gerhard-Mercator-Universita¨t Duisburg, Lotharstrasse 1, 47048 Duisburg, Germany

~Received 23 July 1997!

We consider the transition of the Nagel-Schreckenberg traffic flow model from the free flow regime to the
jammed regime. We examine the inhomogeneous character of the system by introducing a method of analysis
which is based on the local density distribution. We investigate the characteristic fluctuations in the steady state
and present the phase diagram of the system.@S1063-651X~97!02112-0#

PACS number~s!: 05.40.1j, 89.40.1k, 05.60.1w
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I. INTRODUCTION

Over the past few years much attention has been dev
to the study of traffic flow. Since the seminal work of Ligh
hill and Whitham in the middle of the 1950@1# many at-
tempts have been made to construct more and more so
ticated models which incorporate various phenome
occurring in real traffic~for an overview see@2#!. Recently, a
new class of models, based on the idea of cellular autom
has been proven to describe traffic dynamics in a very e
cient way @3#. Especially the transition from free flow t
jammed traffic with increasing car density can be inve
gated very accurately. Nevertheless, besides various ind
tions @4#, no unique description for a dynamical transitio
has been found. Furthermore, no satisfying order param
has been defined so far. In this article we introduce a met
of analysis which allows us to identify the different phases
the system and to describe the phase transition in detail,
defining an order parameter, considering the fluctuati
which drive the transition, and determining the phase d
gram.

We consider a one-dimensional cellular automaton of
ear sizeL and N particles. Each particle is associated w
the integer values v iP$0,1,2, . . . ,vmax% and di
P$0,1,2,3, . . .%, representing the velocity and the distance
the next forward particle@3#. For each particle, the following
update steps representing the acceleration, the slowing d
the noise, and the motion of the particles are done in para
~1! if v i,di then v i→min$v i11,vmax%, ~2! if v i.di then
v i→di , ~3! with probability P v i→max$v i21,0%, and ~4!
r i→r i1v i , wherer i denotes the position of thei th particle.

II. SIMULATIONS AND RESULTS

Figure 1 shows a space-time plot of the system. Each
corresponds to a particle at a given time step. The glo
densityrg5N/L exceeds the critical density and jams occ
Traffic jams are characterized by a high local density of
particles and by a backward movement of shock waves@1#.
One can see from Fig. 1 that in the jammed regime the s
tem is inhomogeneous, i.e., traffic jams with a high lo
density and free flow regions with a low local density coe
ist. In order to investigate this transition one has to take
inhomogeneity into account.

Traditionally one determines the so-called fundamen
diagram, i.e., the diagram of the flow vs the density. T
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global flow is given byF5rg^v&, where ^v& denotes the
averaged velocity of the particles. Due to the stochastic
havior of the dynamics for 0,P,1 the system behaves in
dependently of the initial conditions after a certain transi
regime. In this limit one can interpret^•••& as a time or
ensemble average. ForP50 andP51 the dynamics is de-
terministic and the behavior depends strongly on the ini
conditions. In any case, these nonlocal measurements ar
sensitive to the inhomogeneous character of the system,
the information about the two different coexisting phases
lost. In the following we apply a method of analysis which
based on the measurement of the local density distribu
p(r). The local densityr is measured on a section of th
system of sized according to

r5
1

rgd (
i 51

N

u~d2r i !. ~1!

Of course we have checked that the main results are
affected by the value ofd, provided thatd is significantly
smaller than the system sizeL in order to measure the loca
properties. In order to reflect the behavior of the low dens
regimed should be significantly larger than a certain leng
scalel0 which corresponds to the characteristic length sc
of the density fluctuations in the free flow phase~see below!.
For any parameter set$vmax,P% the local densityr fluctuates
around the value of the global densityrg and the probability

FIG. 1. Space-time plot forvmax55, P5
1
2, andrg.rc . Note

the separation of the system in high and low density regions.
1171 © 1998 The American Physical Society
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FIG. 2. The local density distributionp(r) for
various values of the global density,vmax55,
P5

1
2, andd5256. The dashed line correspond

to the characteristic density of the free flo
phase.
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distribution of the local densityp(r) contains all information
needed to describe the transition.

The local density distributionp(r) is plotted for various
values of the global densityrg in Fig. 2. In the case of smal
values ofrg , see Fig. 2~a!, the particles can be considered
independent~see below! and the local density distribution i
simply Gaussian with the mean valuesrg and a width which
scales withAd. Increasing the global density, jams occur a
the distribution displays two different peaks@Fig. 2~c!#. The
first peak corresponds to the density of free particles an
the phase coexistence regime the position of this peak d
not depend on the global density~see the dashed lines in Fig
2!. The second peak is located at larger densities and c
acterizes the jammed phase. With increasing density the
ond peak occurs in the vicinity of the critical densityrc @Fig.
2~b!# and grows further@Fig. 2~c!# until it dominates the
distribution in the sense that the first peak disappears@Fig.
2~d!#. The two peak structure of the local density distributi
clearly reflects the coexistence of the free flow and jamm
phase above the critical valuerc . In the following we show
that the behavior of the peaks leads to a determination ofrc .

One expects that in a homogeneous system the local
sity distribution displays one peak and is symmetric arou
the global density, i.e.,r(pmax)5rg . This cannot be the cas
in an inhomogeneous system where the local density di
in
es

ar-
c-

d

n-
d

ri-

bution displays two peaks corresponding to two different
existing phases. In Fig. 3 we plot the position of the ma
mum of the local density distributionr(pmax) as a function
of the global densityrg . One clearly sees the transition poi
rc where the position of the maximum becomes independ
of the global density. The inset of Fig. 3 shows that t
determination of the transition point does not depend on
special value ofd. Only the point where the second pea
exceeds the first peak depends on the measurement pa
eterd. With increasingd this point tends to smaller values o
rg because with increasingd the measurement starts to a
erage over the two different phases. From these meas
ments we conclude that the phase transition of the Na
Schreckenberg model is a transition from a homogene
regime~free flow phase! to an inhomogeneous regime whic
is characterized by a coexistence of two phases~free flow
traffic and jammed traffic!.

In order to describe the spatial decomposition of the
existing phases we measured the steady state structure f
@5#

S~k!5
1

L K U(
r 51

L

h~r !eikrU2L , ~2!

whereh(r )51 if the lattice siter is occupied andh(r )50
y
y

r

FIG. 3. The maximum of the local densit
distribution as a function of the global densit
rg . The inset shows that the transition pointrc

does not depend on the value of the parameted.



y
tic

57 1173BRIEF REPORTS
FIG. 4. The structure factorS(k) for P5
1
2,

vmax55, and for various values of the densit
rg . The dashed lines mark the characteris
wavelengthl0 of the free flow phase.
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otherwise. In Fig. 4 we plot the structure factorS(k) for the
same values of the global density as in Fig. 2, i.e., below
the vicinity, above, and far away from the transition point.
is remarkable thatS(k) exhibits a maximum for all consid
ered values of the global density atk0'0.72~dashed lines in
Fig. 4!. This value corresponds to the characteristic wa
lengthl052p/k0 of the density fluctuations in the free flow
phase. The steady state structure factor is related to the
rier transform of the real space density-density correlat
function. The wavelengthl0 corresponds to a maximum o
the correlation function, i.e.,l0 describes the most likely
distance of two particles in the free flow phase. For lo
densities the structure factor is almost independent of
density and displays a minimum for smallk values indicat-
ing the lack of long-range correlations. Crossing the tran
tion point the smallest modeS(k52p/L) increases quickly.
This suggests that the jammed phase is characterized
long-range correlations which decay in the limitrg@rc al-
gebraically as one can see from the log-log plot in Fig. 4~d!.

We already mentioned thatk0 characterizes the densit
fluctuations in the free flow phase. In Fig. 5 we plotk0 as a
function ofvmax. Except for the casevmax51 the maximum
velocity andk0 obey the relationk0(vmax11)5const. The
fact thatvmax51 violates this equation is not surprising. It
already known that the physics forvmax>2 is distinctly dif-
ferent from the casevmax51 @6#. For instance, forvmax51

FIG. 5. The characteristic inverse wavelengthk0 for the maxi-
mum velocitiesvmaxP$1,2,3,4,5,8% for P5
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the fundamental diagram is symmetric around its maxim
at rg50.5 independent of the noise parameterP, whereas
the position of the maximum depends onP for vmax>2 and
no symmetry occurs. Another example is that forvmax>2
jams are allowed to branch~see Fig. 1!, unlike jams for
vmax51 @7#. The qualitatively different behavior forvmax51
is caused by a particle-hole symmetry which is lost for larg
values of the maximum velocity@6#.

Changing from momentum space to real space the c
acteristic wavelengthl0 of the density fluctuations in the
free flow phase is given by

l05
2p

k0
52p

vmax11

const
. ~3!

On the other hand, the average distanced̄ of the particles is
given by the inverse densityrg

21 . In the free flow phase the
average distance is larger than the wavelengthl0,
l0! d̄51/rg , i.e., the cars can be considered as independ
particles. With increasing density this behavior chang
when the average distanced̄ is comparable to the wave
lengthl0' d̄ . The critical density is related to the characte
istic wavelength

FIG. 6. The phase diagram of the Nagel-Schreckenberg mo
Note that in the nondeterministic region 0,P,1 the density of the
maximum flow exceeds the density of the transition point.
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1

d̄
'

1

l0
;

1

vmax11
. ~4!

The fact that the critical density scales withvmax11 is al-
ready known for the deterministic caseP50 @8#.

Up to now we only considered the caseP5 1
2. The phase

diagram in Fig. 6 shows theP dependence of the transitio
density rc . f denotes the free flow phase andf 1 j corre-
sponds to the coexistence region where the system sepa
in the free flow and jammed phase. The dashed line disp
the P dependence of the maximum flow obtained from
analysis of the fundamental diagram@9#. The critical densi-
ties rc , where the phase transition takes place, are lo
than the density values of the maximum flow. Measureme
of the relaxation time, which is expected to diverge a
transition point@4#, confirm this result@10# ~see Fig. 6!. But
one has to mention that the determination of the critical d
sity via relaxation times leads in the coexistence regimf
1 j to unphysical results, in the sense that the relaxation t
becomes negative@10#.

FIG. 7. The number of particles in the high density phaseNj

normalized by the total number of particlesN. Nj /N could serve as
an order parameter and the critical exponent isb51 ~see solid
line!.
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Motivated by real traffic flow we fixed in our measure
ments the noise parameterP and varied the global densit
rg , i.e., we crossed the critical line in the phase diagr
parallel to the vertical axis~see Fig. 6!. In theoretical inves-
tigations, however, it is more convenient and revealing
consider the crossing of the critical line parallel to the ho
zontal axis, i.e., increasing the noise parameterP by a fixed
density. With growingP density fluctuations with a charac
teristic wavelengthl0 occur. This wavelengthl0 grows with
increasingP but no phase separation takes place until it e
ceeds at the transition line a critical wavelengthlc . Then the
system separates into the two coexisting phases and
amount of particles which belong to the jammed phase,Nj ,
could serve as an order parameter. As mentioned above
local density distribution displays two peaks in the hetero
neous phase and the area under each peak is proportion
Nf andNj , respectively. Figure 7 displaysNj normalized by
the total number of particles (N5Nf1Nj ). Approaching the
transition point pc , Nj becomes linear, i.e., it obeys th
equationNj;(P2Pc)

b, where the critical exponent is give
by b51. The continuous behavior ofNj and the diverging
relaxation time@10# suggest that the transition of the traffi
model could be described as a phase transition of sec
order. A detailed analysis of the order parameter and
order parameter fluctuations, including a finite-size analy
requires further investigation.

III. CONCLUSIONS

In conclusion, we have studied numerically the Nag
Schreckenberg traffic flow model using a local density ana
sis. Crossing the critical line of the system a phase transi
takes place from a homogeneous regime~free flow phase! to
an inhomogeneous regime which is characterized by a co
istence of two phases~free flow traffic and jammed traffic!.
The decomposition in the phase coexistence regime is dr
by density fluctuations, provided they exceed a critical wa
length lc . The amount of particles in the jammed pha
could serve as an order parameter which becomes linea
the transition point, suggesting that the transition is of s
ond order.
Ito,
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