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Density fluctuations and phase transition in the Nagel-Schreckenberg traffic flow model

S. Libeck, M. Schreckenberg, and K. D. Usadel
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(Received 23 July 1997

We consider the transition of the Nagel-Schreckenberg traffic flow model from the free flow regime to the
jammed regime. We examine the inhomogeneous character of the system by introducing a method of analysis
which is based on the local density distribution. We investigate the characteristic fluctuations in the steady state
and present the phase diagram of the sys{&h063-651X97)02112-0

PACS numbgs): 05.40:+j, 89.40:+k, 05.60:+w

l. INTRODUCTION global flow is given by®=p(v), where(v) denotes the
averaged velocity of the particles. Due to the stochastic be-
Over the past few years much attention has been devotdtavior of the dynamics for @P<1 the system behaves in-
to the study of traffic flow. Since the seminal work of Light- dependently of the initial conditions after a certain transient
hill and Whitham in the middle of the 195{1] many at- regime. In this limit one can interprdt --) as a time or
tempts have been made to construct more and more sophisnsemble average. F&=0 andP=1 the dynamics is de-
ticated models which incorporate various phenomenderministic and the behavior depends strongly on the initial
occurring in real traffigfor an overview se€?]). Recently, a  conditions. In any case, these nonlocal measurements are not
new class of models, based on the idea of cellular automataensitive to the inhomogeneous character of the system, i.e.,
has been proven to describe traffic dynamics in a very effithe information about the two different coexisting phases is
cient way[3]. Especially the transition from free flow to lost. In the following we apply a method of analysis which is
jammed traffic with increasing car density can be investi-based on the measurement of the local density distribution
gated very accurately. Nevertheless, besides various indicg{p). The local densityp is measured on a section of the
tions [4], no unique description for a dynamical transition system of size according to
has been found. Furthermore, no satisfying order parameter
has been defined so far. In this article we introduce a method 1 N
of analysis which allows us to identify the different phases of p=— 2 6(5—r,). (1
the system and to describe the phase transition in detall, i.e., Pgd =1
defining an order parameter, considering the fluctuations
which drive the transition, and determining the phase dia©Of course we have checked that the main results are not
gram. affected by the value o8, provided thaté is significantly
We consider a one-dimensional cellular automaton of lin-smaller than the system sitein order to measure the local
ear sizeL andN particles. Each particle is associated with properties. In order to reflect the behavior of the low density
the integer values v;e{0,1,2...pma¢ and d; regime & should be significantly larger than a certain length
€{0,1,2,3.. .}, representing the velocity and the distance toscale\ , which corresponds to the characteristic length scale
the next forward particl€3]. For each particle, the following of the density fluctuations in the free flow phasee below:
update steps representing the acceleration, the slowing dowRor any parameter sét .., P} the local density fluctuates
the noise, and the motion of the particles are done in parallekround the value of the global density and the probability
(1) if v;<d; thenv;—minfv;+1vma, (2) if vi>d; then
vi—d;, (3) with probability P v;—maxv;—1,0}, and (4)
ri—r;+uv;, wherer; denotes the position of thi¢h particle.

II. SIMULATIONS AND RESULTS

Figure 1 shows a space-time plot of the system. Each do &
corresponds to a particle at a given time step. The gIobaf‘I
densitypy=N/L exceeds the critical density and jams occur.
Traffic jams are characterized by a high local density of the
particles and by a backward movement of shock wdilés
One can see from Fig. 1 that in the jammed regime the sys
tem is inhomogeneous, i.e., traffic jams with a high local
density and free flow regions with a low local density coex- St
ist. In order to investigate this transition one has to take this space —
inhomogeneity into account.

Traditionally one determines the so-called fundamental FIG. 1. Space-time plot fob =5, P=3, andpy>p.. Note
diagram, i.e., the diagram of the flow vs the density. Thethe separation of the system in high and low density regions.
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distribution of the local densitg(p) contains all information
needed to describe the transition.

The local density distributiop(p) is plotted for various
values of the global density, in Fig. 2. In the case of small
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FIG. 2. The local density distributiop(p) for
various values of the global density, =5,
P=%, and §=256. The dashed line corresponds
to the characteristic density of the free flow
phase.

bution displays two peaks corresponding to two different co-
existing phases. In Fig. 3 we plot the position of the maxi-
mum of the local density distributiop(pna) @s a function

of the global density, . One clearly sees the transition point

values ofpy, see Fig. 2a), the particles can be considered asp. where the position of the maximum becomes independent
independentsee below and the local density distribution is of the global density. The inset of Fig. 3 shows that the
simply Gaussian with the mean valyggand a width which  determination of the transition point does not depend on the
scales withy/s. Increasing the global density, jams occur andspecial value ofs. Only the point where the second peak
exceeds the first peak depends on the measurement param-

the distribution displays two different peaksig. 2(c)]. The

first peak corresponds to the density of free particles and imterd. With increasings this point tends to smaller values of
the phase coexistence regime the position of this peak dogg, because with increasing the measurement starts to av-
not depend on the global densigee the dashed lines in Fig. erage over the two different phases. From these measure-
2). The second peak is located at larger densities and chaments we conclude that the phase transition of the Nagel-
acterizes the jammed phase. With increasing density the seSchreckenberg model is a transition from a homogeneous
regime(free flow phasgto an inhomogeneous regime which

ond peak occurs in the vicinity of the critical density[Fig.

2(b)] and grows furthefFig. 2(c)] until it dominates the

distribution in the sense that the first peak disapp&gig.

2(d)]. The two peak structure of the local density distribution

is characterized by a coexistence of two phade=e flow

traffic and jammed traffic

In order to describe the spatial decomposition of the co-

clearly reflects the coexistence of the free flow and jammedXxisting phases we measured the steady state structure factor

phase above the critical valygg . In the following we show

(5]

that the behavior of the peaks leads to a determinatign of
One expects that in a homogeneous system the local den-

sity distribution displays one peak and is symmetric around

the global density, i.ep(Pma) = pg- This cannot be the case

in an inhomogeneous system where the local density distriwhere (r)=1 if the lattice siter is occupied andy(r)=0
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FIG. 3. The maximum of the local density
distribution as a function of the global density
pg. The inset shows that the transition pojnt
does not depend on the value of the paraméter
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FIG. 4. The structure factoB(k) for P=3,
Umax=D, and for various values of the density
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otherwise. In Fig. 4 we plot the structure facfa(k) for the the fundamental diagram is symmetric around its maximum

same values of the global density as in Fig. 2, i.e., below, irat pg=0.5 independent of the noise paramegrwhereas

the vicinity, above, and far away from the transition point. It the position of the maximum depends Brfor v ,,,=2 and

is remarkable thaS(k) exhibits a maximum for all consid- no symmetry occurs. Another example is that {gf,=2

ered values of the global densitylgt~0.72(dashed lines in jams are allowed to branctsee Fig. 1, unlike jams for

Fig. 4). This value corresponds to the characteristic wavev =1 [7]. The qualitatively different behavior faf,,,,= 1

length\ o= 27/kg of the density fluctuations in the free flow is caused by a particle-hole symmetry which is lost for larger

phase. The steady state structure factor is related to the Foualues of the maximum velocity6].

rier transform of the real space density-density correlation Changing from momentum space to real space the char-

function. The wavelengtih, corresponds to a maximum of acteristic wavelength\y of the density fluctuations in the

the correlation function, i.e) describes the most likely free flow phase is given by

distance of two particles in the free flow phase. For low

densities the structure factor is almost independent of the

density and displays a minimum for sméllvalues indicat- N _2_77_ Umaxt 1 3)

ing the lack of long-range correlations. Crossing the transi- 0, “" const

tion point the smallest mod&(k=2/L) increases quickly.

This suggests that the jammed phase is characterized by .

long-range correlations which decay in the lip§>p. al-  On the other hand, the average distadcef the particles is

gebraically as one can see from the log-log plot in Fig)4  given by the inverse density; *. In the free flow phase the
We already mentioned tha(, characterizes the density average distance is larger than the wavelength,

fluctuations in the free flow phase. In Fig. 5 we plgtas a ) q— 1lpg, i.e., the cars can be considered as independent

f“TCti_‘t)” Of‘anllax- Excet[?]t for Ithte ﬁ‘semaXill ﬂle ma>;imTuhm particles. With increasing density this behavior changes
velocity andkg obey the relatiorko(umact 1)=const. The when the average distanak is comparable to the wave-

fact thatv o= 1 Vviolates this equation is not surprising. It is - o e
already known that the physics fof,.,=2 is distinctly dif- lengthA o~ d. The critical density is related to the character-
istic wavelength

ferent from the case,=1 [6]. For instance, fou =1
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FIG. 6. The phase diagram of the Nagel-Schreckenberg model.
FIG. 5. The characteristic inverse wavelengthfor the maxi-  Note that in the nondeterministic regior<® <1 the density of the
mum velocitiesy naye {1,2,3,4,5,8 for P=1. maximum flow exceeds the density of the transition point.
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FIG. 7. The number of particles in the high density phbge
normalized by the total number of particls N; /N could serve as
an order parameter and the critical exponenjBis1 (see solid
line).

Pc==7 . 4

The fact that the critical density scales with,+ 1 is al-
ready known for the deterministic caBe=0 [8].
Up to now we only considered the caBe- 3. The phase

diagram in Fig. 6 shows the dependence of the transition

density p.. f denotes the free flow phase afid | corre-
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Motivated by real traffic flow we fixed in our measure-
ments the noise parametBrand varied the global density
pg. i.6., we crossed the critical line in the phase diagram
parallel to the vertical axigsee Fig. §. In theoretical inves-
tigations, however, it is more convenient and revealing to
consider the crossing of the critical line parallel to the hori-
zontal axis, i.e., increasing the noise paramé&dayy a fixed
density. With growingP density fluctuations with a charac-
teristic wavelengthy , occur. This wavelengthy grows with
increasingP but no phase separation takes place until it ex-
ceeds at the transition line a critical wavelength Then the
system separates into the two coexisting phases and the
amount of particles which belong to the jammed phagg,
could serve as an order parameter. As mentioned above, the
local density distribution displays two peaks in the heteroge-
neous phase and the area under each peak is proportional to
N; andN;, respectively. Figure 7 display¢; normalized by
the total number of particledN=N;+ N;). Approaching the
transition pointp., N, becomes linear, i.e., it obeys the
equationN;~(P—P)”, where the critical exponent is given
by g=1. The continuous behavior ®; and the diverging
relaxation time[10] suggest that the transition of the traffic
model could be described as a phase transition of second
order. A detailed analysis of the order parameter and the
order parameter fluctuations, including a finite-size analysis,
requires further investigation.

IIl. CONCLUSIONS

sponds to the coexistence region where the system separatesin conclusion, we have studied numerically the Nagel-
in the free flow and jammed phase. The dashed line displaySchreckenberg traffic flow model using a local density analy-
the P dependence of the maximum flow obtained from ansis. Crossing the critical line of the system a phase transition

analysis of the fundamental diagrd®)|. The critical densi-

takes place from a homogeneous regifinee flow phasgto

ties p., where the phase transition takes place, are lowean inhomogeneous regime which is characterized by a coex-
than the density values of the maximum flow. Measurementgtence of two phasedree flow traffic and jammed traffic
of the relaxation time, which is expected to diverge at aThe decomposition in the phase coexistence regime is driven

transition poin{4], confirm this resulf10] (see Fig. 6. But

by density fluctuations, provided they exceed a critical wave-

one has to mention that the determination of the critical dentength A.. The amount of particles in the jammed phase
sity via relaxation times leads in the coexistence regime could serve as an order parameter which becomes linear at
+j to unphysical results, in the sense that the relaxation timéhe transition point, suggesting that the transition is of sec-

becomes negativil0].

ond order.
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